A markov classification model for metabolic pathways
نویسندگان
چکیده
منابع مشابه
An optimization model for metabolic pathways
MOTIVATION Different mathematical methods have emerged in the post-genomic era to determine metabolic pathways. These methods can be divided into stoichiometric methods and path finding methods. In this paper we detail a novel optimization model, based upon integer linear programming, to determine metabolic pathways. Our model links reaction stoichiometry with path finding in a single approach....
متن کاملAn optimisation model for metabolic pathways
In this paper we detail a novel optimisation model, based upon integer linear programming, to determine metabolic pathways. Our model links reaction stoichiometry with path finding in a single approach. We test the ability of our model to determine 40 annotated E.coli metabolic pathways. We show that our model is able to determine 36 of these 40 pathways in a computationally effective manner. D...
متن کاملClassification with Hidden Markov Model
Classification and statistical learning by hidden markov model has achieved remarkable progress in the past decade. They have been applied in many areas like speech recognition and handwriting recognition. However, learning by Hidden Markov Model (HMM) is still restricted to supervised problems. In this paper, we propose a new learning method 2484 Badreddine Benyacoub et al. based on HMM techni...
متن کاملthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولA Hidden Markov Model Variant for Sequence Classification
Sequence classification is central to many practical problems within machine learning. Distances metrics between arbitrary pairs of sequences can be hard to define because sequences can vary in length and the information contained in the order of sequence elements is lost when standard metrics such as Euclidean distance are applied. We present a scheme that employs a Hidden Markov Model variant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithms for Molecular Biology
سال: 2010
ISSN: 1748-7188
DOI: 10.1186/1748-7188-5-10